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Hessian-based anisotropic mesh adaptation
in domains with discrete boundaries

Yu. V. VASSILEVSKI �, V. G. DYADECHKO†, and K. N. LIPNIKOV†

Abstract — Black-box methodology for generating anisotropic adaptive tetrahedral meshes in do-
mains with discrete boundaries is described. A new high-order reconstruction method for triangular
surface meshes is proposed. The performance of the method for a model convection–diffusion problem
is demonstrated.

To our Teacher

Adaptive methods greatly reduce the demand for a large number of unknowns and
improve the accuracy of simulations via grid adaptation near fine-scale features of
the solution. In this paper, we consider a tensor metric-based adaptive methodology
[1, 3, 4, 6, 9, 15]. The metric is induced by an approximate Hessian (matrix of
second derivatives) of the discrete solution. The focus of this paper is the treatment
of curved internal and boundary surfaces.

In many applications the exact parameterization of curved surfaces may be un-
known. In this case the surfaces are described by triangular meshes (e.g., meshes
coming from CAD systems) which reduce the performance of adaptive methods due
to a limited surface resolution. One possible solution is to use the results of adaptive
computations as the feedback for CAD models. This approach usually requires the
user’s control and becomes too sophisticated for some applications. However, if the
underlying surfaces are sufficiently smooth (or piecewise smooth), the original tri-
angular meshes carry additional information regarding these surfaces. In this paper
we use this fact to design a new surface reconstruction method and analyze it both
theoretically and numerically.

There are many methods for higher-order reconstruction of piecewise linear sur-
faces (see 7, 10–12) and references therein). In [10, 12] the surface is parameterized
and the desired surface characteristics are computed from the derivatives of func-
tions specifying the parameterization. In [7, 10] the discrete surface is approximated
by a piecewise quadratic surface using the best fit algorithm. The method proposed
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in this paper uses the technique of a discrete differential geometry to compute an ap-
proximate Hessian of a piecewise quadratic function representing the reconstructed
surface. The Hessian is computed in a weak sense by analogy with the finite element
methods. The developed method gives the exact solution for quadratic surfaces.

We demonstrate the efficiency of the new method for solving a convection-diffu-
sion problem simulating transport phenomena around a spherical obstacle. The so-
lution has a boundary layer along a part of the obstacle boundary. As the result, the
accuracy of the discrete solution depends strongly on the accuracy of the boundary
representation.

The paper outline is as follows. In Section 2 we describe briefly the Hessian-
based adaptation methodology. In Section 3 we discuss two techniques for treat-
ment of discrete surfaces. In Section 4 we illustrate our adaptive methodology with
numerical tests.

1. HESSIAN-BASED MESH ADAPTATION

Let Ωh be a mesh with N � Ωh � elements and uh be a discrete piecewise linear solution
computed at the mesh nodes with some numerical method which we denote by�

Ωh . We shall simply write that uh � � Ωh u where u is an unknown exact solution.
The ideal goal would be to find a mesh (probably anisotropic) which minimizes the
maximal norm of the discretization error � u � � Ωhu � ∞. In many problems this error
can be majorized by the interpolation error, � u ��� Ωhu � ∞, where � Ωh is the linear
interpolation operator on the mesh Ωh. It gives us the following mesh optimization
problem:

Ωopt
h � arg min

N � Ωh 	�
 Nmax
� u ��� Ωhu � ∞ (1.1)

where Nmax is the maximal number of mesh elements (tetrahedra) defined by the
user. This problem was analyzed both theoretically and numerically in [1, 15]. In
fact, problem (1.1) was replaced by a simpler problem which provides a constructive
way for finding an approximate solution of (1.1), or a quasi-optimal mesh. The latter
is quasi-uniform in the metric 
Hh 
 derived from the discrete Hessian Hh of the
discrete solution uh. The generation of quasi-uniform meshes is based on the notion
of the mesh quality.

Let G be a metric generated by a symmetric positive definite 3 � 3 matrix whose
entries depend on the point x � Ω. For an element e in Ωh, we denote by 
 e 
 G its
volume in metric G and by 
 ∂∂e 
 G the total length of its edges (also in metric G).
We define the mesh quality as

Q � Ωh ��� min
e � Ωh

Q � e � (1.2)

where Q � e � is the quality of a single element e,

Q � e ��� 6 4
�

2 
 e 
 G
 ∂∂ e 
 3G F

� 
 ∂∂ e 
 G
6h ����� 0 � Q � e ��� 1 � (1.3)
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Figure 1. Local topological operations for 2D triangular meshes: (a) node insertion, (b) edge swap-
ping, (c) node deletion, and (d) node movement.

Here h � is the mesh size in the G-uniform mesh with Nmax elements and F � t � is
a continuous smooth function, 0 � F � t � � 1, with the only maximum at point 1,
F � 1 � � 1, and such that F � 0 � � F ��� ∞ � � 0. The last factor in (1.3) controls the
size of the element, whereas the remaining factors control its shape.

The optimization of the mesh Ωh with respect to the mesh quality (1.2) results
in the G-quasi-uniform grid. Since the mesh quality is as good as the quality of
its worst element, the mesh improvement can be achieved with a series of local
operations applied to this element. The list of such operations includes alternations
of topology with node deletion/insertion, edge/face swapping, and node movement
(see Fig. 1 for 2D analogs of local operations and [1] for more details).

Such local operations as node deletion/insertion and edge/face swapping are
well described in the literature. The implementation of node movement requires
additional comments. It is driven by the minimization of the smooth functional � :� 3 � � , of the node position x, defined as a reciprocal of the mesh quality (1.2),
i.e. 1 � � � ∞.

Some restrictions have to be imposed on mesh modifications to keep the mesh
unfolded and to preserve internal and boundary surfaces. For example, the node
movement should not alter the sign of the oriented volumes of the surrounding tetra-
hedra. Additionally, if a node lives on a surface, its movement should be restricted
to this surface. In the next section we consider this problem in more detail.

Now we are ready to describe the iterative adaptive algorithm for the approxi-
mate solution of (1.1). Let us assume that an initial mesh is given. We begin with
computing a discrete solution uh and generating the Hessian-based metric 
H h 

which is the symmetric positive definite matrix given by

Hh � WhΛhW T
h � 
Hh 
 � Wh 
Λh 
W T

h

where Wh is the orthonormal matrix, Λh � diag � λ1 � λ2 � λ3 � is the diagonal matrix,
and 
Λh 
 � diag � max � 
 λ1 
 ;ε � � max � 
 λ2 
 ;ε � � max � 
 λ3 
 ;ε ��� with ε � 0 being a user-
defined tolerance. Then, we use local operations to build a mesh which is quasi-
uniform in metric 
Hh 
 and proceed with computing a new discrete solution and a
new metric. If the mesh does not require any modifications, i.e. it is already quasi-
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uniform, we terminate the adaptation procedure and refer to the resulting mesh as
the quasi-optimal mesh.

It is proved in [1] that quasi-optimal meshes in polyhedral domains yields the
asymptotically optimal estimate:

� u � � Ωhu � ∞ � N � Ωh � � 2
�
3 � (1.4)

In Section 4 we demonstrate numerically that (1.4) holds in a more general case of
curved boundaries. We also show that the optimal estimate is violated when these
boundaries are represented by triangular meshes.

2. TREATMENT OF INTERNAL AND BOUNDARY SURFACES

The distinctive geometrical features of any model are internal and boundary sur-
faces (feature surfaces) and their intersections (feature edges). Let us consider a
particular feature surface Γ � � 3 and a feature edge Θ � � 3 . In many cases analytic
information on these geometric features is not available and the only way to model
them is to use faces and edges of the original mesh.

Let the discrete feature surface Γh be the triangulated surface of the original
mesh Ωh approximating Γ with triangular faces � Γt � , Γh ��� t Γt , and the discrete
feature edge Θh be a polyline formed by the edges of Ωh approximating Θ. We
describe the discrete geometric features using parametric spaces � Θ, � Γ and maps�

Θ,
�

Γ such that
�

Θ : � Θ
� Θh � �

Γ : � Γ
� Γh �

In this section we consider two techniques for treatment of Γh and Θh. The first
technique addresses the problem of a node movement along this piecewise linear
surface. The second technique describes a new surface reconstruction method.

2.1. Node movement along a piecewise linear surface

In order to preserve geometrical features Θh and Γh during mesh modifications one
has (a) to allow resident nodes to move only over the corresponding discrete fea-
tures and (b) to forbid creation of new edges and faces which intersect these fea-
tures. Hereafter, we focus on the most complicated constrained local operation, node
movement.

While the global parameterization of the discrete feature edge Θh represented by
a polyline is trivial, the definition of the global parametric space SΓ for the discrete
feature surface Γh is pretty tricky. The restriction � 
 Γh of the objective function
� to Γh is expected to have discontinuous normal derivatives on every sharp edge
between constitutent faces. This complicates the global parameterization. However,
the latter is not a priority: we introduce a separate parametric space for every face
composing Γh [8] and use standard numerical tools of smooth optimization to move
a node over a constituent face. Once the boundary of the local parametric space is
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hit, the algorithm will use gradient information to make a decision whether to stay
within a current parametric space or to switch to a new one.

We propose to use a line search method [2, 13] for node movement and the
barycentric parameterization of constituent faces Γt for SΓ. With barycentric pa-
rameterization, one can easily keep track of the boundaries of the triangular face: if� β1 � β2 � β3 � and � ∆β1 � ∆β2 � ∆β3 � are barycentric coordinates of the node position and
the search direction respectively, then the maximum step size allowed is

min
n � 1 � 2 � 3 � max � � βn

�
∆βn;0 ��� �

The search over the triangulated surface can be identified as one of the three
different states:

(1) moving over the face;
(2) moving along the edge;
(3) staying at the vertex.

Whenever the search is in State 1 and the face edge is reached, the steepest
descent direction of � 
 Γh (the restriction of � to Γh) may guide the further search
either to stick with the current face, or to maintain State 1 switching to the adjacent
face, or to continue along the edge (switch to State 2).

In State 2 the node motion is governed by the minimization of the function � 
��
where � denotes the mesh edge. If the local minimum is found at one of the ends of
� , the search comes to State 3. Otherwise the local minimum of � 
�� can be located
within the edge. Once this minimum is reached, one has to evaluate one-sided � -
normal derivatives of � 
 Γh , one per each adjacent edge. If the objective function
decreases as we approach the edge from either side, then the search is over: we have
found a local minimum of the � 
 Γh . If not, the search should be continued over the
adjacent face which guarantees the steepest descent.

The strategy in State 3 is pretty straightforward: find the face (or edge) that
provides the steepest descent and switch to State 1 (or State 2, respectively). If there
is no descent direction found, the search is over: we are at the local minimum.

2.2. Piecewise quadratic extrapolation of piecewise linear surfaces

In this section we consider again the feature surface Γ. To simplify the presentation,
we assume that Θ is its boundary. We assume also that the nodes of Γh and Θh be-
long to Γ and Θ, respectively, although this assumption is not necessary in practice.
The piecewise quadratic extrapolation Γ̃h of Γh is defined as the continuous surface
being the closure of a union of open non-overlapping pieces Γ̃t of local quadratic
extrapolations over faces Γt .

The local extrapolation Γ̃t is described by a quadratic function ϕ 2 � t . We shall
omit the superscript t whenever it does not result in confusion. For our purposes, it
will be convenient to describe the function ϕ 2 in a local coordinate system � ξ1 � ξ2 �
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associated with the plane of Γt . In this coordinate system, the 2D multi-point Taylor
formula for a quadratic function ϕ2 with the Hessian Hϕ2 � � Hϕ2

ps � 2
p � s � 1 reads

ϕ2 � ξξξ ��� � 1
2

3

∑
i � 1
� Hϕ2 � ξξξ � ai � � � ξξξ � ai � � pi � ξξξ � (2.1)

where a1, a2, a3 are the vertices of the triangle Γt and pi � ξξξ � is a piecewise linear
function such that pi � a j � � δi j .

In order to recover the Hessian Hϕ2 � we first assume that numbers αi �� Hϕ2 � i � � i � , i � 1 � 2 � 3, representing the projection of this Hessian on edges � i of
Γt are given. Hereafter, we use � i for both the mesh edge and the corresponding
vector. In the local coordinate system, vectors � i are described by two coordinates,
� i � � li

1 � li
2 � . We assume that vector � i begins at the vertex ai and ends at the vertex

ai � 1 with a4 � a1. Then, the definition of αi gives���
Hϕ2

11 Hϕ2
12

Hϕ2
12 Hϕ2

22 � � li
1

li
2 � � � li

1

li
2 ��� � αi

which, in turn, results in the system of three linear equations for the unknown entries
of the matrix Hϕ2 :

li
1li

1Hϕ2
11 � li

2li
2Hϕ2

22 � 2 li
1li

2Hϕ2
12 � αi � i � 1 � 2 � 3 � (2.2)

Lemma 2.1. The matrix of system (2.2) is non-singular.

Proof. Let us denote the coefficient matrix of system (2.2) by B. Note that � 1 �
� 2 � � 3 � 0. Using this fact in direct calculations of the determinant of matrix B we
get 
 det B 
 � 2 
 l1

1 l2
2 � l2

1 l1
2 
 3 � 16 
Γt 
 3 � 0 (2.3)

where 
Γt 
 is the area of the triangle Γt . This proves the assertion of the lemma.

Second, we use the results of [1] where the algorithm for computing discrete
Hessian Hh � ai � at a vertex ai of a continuous piecewise linear solution is presented
and analyzed. We define αi as the average of two nodal approximations,

αi � 1
2 � � Hh � ai � � i � � i � � � Hh � ai � 1 � � i � � i � � (2.4)

associated with the edge � i. There are two exceptions from this rule. If ai � Θh and
ai � 1

�� Θh, then αi is equal to � Hh � ai � 1 � � i � � i � . If ai � Θh and ai � 1 � Θh, then αi � 0.
This implies that the nodal approximation of the Hessian is not recovered at feature
edges and, therefore, the traces of Γh and Γ̃h on Θh coincide.

It remains to describe how we recover H h � ai � for every interior node ai of Γh.
We begin by introducing a few additional notations. For each ai, we define the su-
perelement σi as a union of all triangles of Γh sharing ai. Then, we define a plane
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approximating in the least square sense the nodes of this superelement and associate
this plane with the local coordinate system � ξ1 � ξ2 � -plane. Let σ̂i be the projection
of σi onto the � ξ1 � ξ2 � -plane. Further, let ϕ i � ξ1 � ξ2 � be the continuous function rep-
resenting locally Γ and ϕ i

h � ξ1 � ξ2 � be the continuous piecewise linear function rep-
resenting σi. We assume that both functions are single-valued over σ̂i. Finally, we
denote the Hessian of ϕ by Hϕ .

The components of the discrete Hessian H h are defined in a weak sense by
�

σ̂i

Hh
ps � ai � ψh dS � � �

σ̂i

∂ϕ i
h

∂ξp

∂ψh

∂ξs
dS � p � s � 1 � 2 (2.5)

which holds for any continuous piecewise linear function ψh vanishing on ∂ σ̂i. Note
that the discrete Hessian Hh � ai � is a geometric characteristic of the feature surface Γ
at the point ai (related to its curvature) and, therefore, is invariant of the position of
the projection plane associated with the superelement σi. In other words, the value� Hh � ai � � i � � i � is independent of the local transformation of the coordinate system.

In addition to the above invariance and the obvious uniqueness of H h, the spec-
ified extrapolation is exact for quadratic surfaces, as long as the triangle Γt has no
edges on Θh. Indeed, for a quadratic function ϕ the recovery method (2.5) is exact,
i.e. Hh

ps � ai � � Hϕ
ps � ai � . Therefore, for all ai

�� Θh� Hϕ � � � � � � Hh � ai � � � � �
for all edges � � Γh � Θh and Hϕ2 � Hϕ follows from (2.4) and Lemma 2.1.

Now we consider the approximation property of our extrapolation
method. For every triangle Γt we define a superelement σ t as a union of superele-
ments σi corresponding to vertices ai of Γt . Again, we use the local coordinate sys-
tem � ξ1 � ξ2 � -plane associated with the triangle Γt . Let σ̂ t (respectively, Γ̂t ) be the
projection of σ t (respectively, Γt ) onto the � ξ1 � ξ2 � -plane. We define the constant
tensor Hϕ

σ t for the superelement σ̂ t as

Hϕ
σ t � Hϕ � arg max

ξ � σ̂ t

 detHϕ � ξ � 
 � � (2.6)

Proposition 2.1. Let the edges of a triangle Γt be the interior edges of Γh and
σ̂t be a quasi-uniform triangulation with a size h. Let ϕ � ξ1 � ξ2 � be C2 � σ̂ t � function
representing locally Γ and ϕh � � σ̂ t ϕ be a continuous piecewise linear function
representing σ t . Moreover, let Hϕ and Hh be the differential and discrete Hessians
of ϕ and ϕh, respectively, such that� Hϕ

ps � Hϕ
σ t � ps � L∞ � σ̂ t 	 � δ (2.7)� ∇ � ϕ � � σ̂ t ϕ � � L2 � σ̂ t 	 � ε � (2.8)

Then, the quadratic function ϕ2 describing Γ̃t by (2.1), (2.2), (2.4) and (2.5) satisfies� ϕ � ϕ2 � L∞ � Γ̂t 	 � C � ε � δh2 � (2.9)

where a constant C is independent of δ , ε , h and ϕ .
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Proof. Hereinafter we shall use notations C, Ci for generic constants having dif-
ferent values in different places. The definition (2.5) of the discrete Hessian implies
that �

σ̂i

� Hϕ
ps � Hh

ps � ai � � ψh dS � � �
σ̂i

∂ � ϕ � ϕh �
∂ξp

∂ψh

∂ξs
dS (2.10)

for any ψh � P1 � σ̂i � vanishing on ∂ σ̂i. Now, using the triangle inequality and then
the Cauchy inequality, we get

�
σ̂i


Hϕ
σ t � ps � Hh

ps � ai � 
 
ψh 
 dS � ���� ∂ � ϕ � ϕh �
∂ξp

���� L2 � σ̂i 	 ���� ∂ψh

∂ξs
���� L2 � σ̂i 	

�
�

σ̂i


Hϕ
σ t � ps � Hϕ

ps 
 
ψh 
 dS �
Let us evaluate all terms in the above inequality for a particular choice of ψh such
that ψh � ai ��� 1. The term in the left-hand side is estimated from below as follows:

�
σ̂i


Hϕ
σ t � ps � Hh

ps � ai � 
ψh dS � C1 
Hϕ
σ t � ps � Hh

ps � ai � 
 
 σ̂i 
 �
The terms in the right-hand side may be easily estimated from above using the
quasi-uniformity of σ̂ t and assumption (2.7):

���� ∂ψh

∂ξs
���� L2 � σ̂i 	 � C2 � �

σ̂i


Hϕ
σ t � ps � Hϕ

ps 
ψh dS � C3δ 
 σ̂i 
 �
Combining the above inequalities, we get


Hϕ
σ t � ps � Hh

ps � ai � 
 � C2
C1 
 σ̂i 
 ε � C3

C1
δ � (2.11)

Let Hϕ2 be the Hessian of the quadratic function ϕ2. The next step in the proof
is to estimate the discrepancy between H ϕ

σ t and Hϕ2 . For this purpose, we use the
perturbation analysis and Lemma 2.1. Since both Hessians H ϕ

σ t , Hϕ2 are constant,
they are uniquely defined by the right-hand side of system (2.2) and the edges of the
triangle Γt . Let α1, α2 and α3 be the entries of the right-hand side in (2.2) whose
solution is Hϕ2

ps , and let βi � � Hϕ
σ t � i � � i � , i � 1 � 2 � 3. Using definition (2.4), inequality

(2.11), a linear algebra estimate for eigenvalues of a 2 � 2 matrix, and the assumption
of quasi-uniformity of σ̂ t , we get


αi � βi 
 � 1
2 
 � Hh � ai � � i � � i � � � Hh � ai � 1 � � i � � i � � 2 � Hϕ

σ t � i � � i � 

� 2

��
C2ε

C1 min
i � 1 � 2 � 3 
 σ̂i 
 � C3

C1
δ �� � � i � � i � � C � ε � δh2 � �
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The perturbation analysis states that
Hϕ2
ps � Hϕ

σ t � ps 
 � C 
 λ � 1
min � B � 
 max

i � 1 � 2 � 3 
αi � βi 

where the matrix B is defined in Lemma 2.1 and λmin � B � is its eigenvalue closest to
zero. The application of the Gershgorin theorem and the quasi-uniformity assump-
tion give the estimate for the maximal eigenvalue of B:

λmax � B � � 2 max
1 � i � 3


 � i 
 2 � Ch2 �
Therefore, due to (2.3)


 λmin � B � 
 � 
 det B 

λ 2

max � B � � 16 
Γt 
 3
λ 2

max � B � � Ch2 �
Using the last estimate, we get easily
Hϕ

σ t � ps � Hϕ2
ps 
 � C � ε �

h2 � δ � � (2.12)

Finally, by virtue of the multi-point Taylor formula for a general function ϕ
whose linear interpolant ϕh vanishes on the triangle Γ̂t � Γt we get:

ϕ � ξξξ ��� � 1
2

3

∑
i � 1
� Hϕ � ξξξ �i � � ξξξ � ai � � � ξξξ � ai � � pi � ξξξ �

where ξξξ �i � ξξξ � is a point inside Γ̂t , ξξξ � Γt . Together with formula (2.1) it gives


ϕ � ξξξ � � ϕ2 � ξξξ � 
 � 1
2

�����
3

∑
i � 1
��� Hϕ � ξξξ �i � � Hϕ2 � � ξξξ � ai � � � ξξξ � ai � � pi � ξξξ � ����� � C � ε � δh2 � �

This proves the assertion of the proposition.

Generally speaking, the values of ε and δ depend on the derivatives of ϕ . If ϕ
is sufficiently smooth, for example it is in C3 � σ̂ t � , then ε � h3 [5], δ � h and we get
the expected result � ϕ � ϕ2 � L∞ � Γ̂t 	 � Ch3 �
3. NUMERICAL EXPERIMENTS

We consider the following convection-diffusion equation as the model problem:� 0 � 01∆u � b � ∇u � 0 in Ω (3.1)
u � g on Γin

∂u
∂n � 0 on Γout

u � 0 on ∂Ω � � Γin � Γout � �
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(a) (b) (c)

Figure 2. (a) Mesh trace at the obstacle, (b) mesh cut and (c) isolines of solution u � on the plane
passing through the center of the obstacle and parallel to the x1x2-plane.

Here b � � 1 � 0 � 0 � T is the velocity field, Ω � � 0 � 1 � 3 � B0 � 5 � 0 � 18 � is the computational
domain with B0 � 5 � r � � � x : ∑3

i � 1 � xi � 0 � 5 � 2 � r2 � , Γin � � x � ∂Ω : x1 � 0 � , Γout �
� x � ∂Ω : x1 � 1 � , and g � x2 � x3 ��� 16x2 � 1 � x2 � x3 � 1 � x3 � is the standard Poiseile
profile of the incoming flow.

The solution u to (3.1) possesses a boundary layer along the upwind side of
the spherical obstacle B0 � 5 � 0 � 18 � and is very smooth in the shadow region of this
obstacle. Since the exact solution is not known, in our experiments we replace it
with the piecewise linear finite element solution u � computed on a very fine adaptive
(quasi-optimal) mesh containing more than 1.28 million tetrahedra (see Fig. 2). To
build the adaptive mesh, we used the analytical representation of ∂Ω.

In the first set of experiments (Fig. 3a) we demonstrate the asymptotic result
(1.4) with u � instead of u. The L∞ error fits the analytic curve 60N � Ωh � � 2

�
3.

In the second set of experiments (Fig. 3b), the boundary Γ � ∂B0 � 5 � 0 � 18 � is ap-
proximated with a quasi-uniform mesh Γh. We determine the L∞ error as a function
of N � Ωh � for three different values of h. Figure 3 shows the saturation of this error
due to the limited boundary resolution. We observe that the saturated error θh is
almost reciprocal to h2: θ0 � 05 � 0 � 20, θ0 � 025 � 0 � 067, and θ0 � 0125 � 0 � 021. This is
probably related to the second-order approximation of the smooth boundary Γ by
the piecewise linear manifold Γh.

In the third set of experiments (Fig. 3c), we study the effect of the piecewise
quadratic extrapolation Γ̃h of Γh on the accuracy of the discrete solution. We com-
pare the saturation errors for three meshes: Γ0 � 025, Γ0 � 0125 and Γ �0 � 0125. The third
mesh is obtained from Γ0 � 0125 by projecting its mesh nodes onto Γ̃0 � 025. This mesh
must provide the saturation error θ �h which is between the saturation errors on the
other two meshes. This is illustrated in Fig. 3 where θ0 � 0125 � 0 � 021, θ0 � 025 � 0 � 067,
and θ �0 � 0125 � 0 � 043.

Another approach for building a piecewise linear surface Γ �0 � 0125 is based on the
uniform refinement of Γ0 � 025 with a subsequent projection of new mesh nodes onto
Γ̃0 � 025. We use the first approach because it gives the most rigorous comparison of
saturation errors on meshes Γ0 � 0125 and Γ �0 � 0125.
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Figure 3. Convergence analysis: (a) using analytic representation of the obstacle boundary, (b) us-
ing three discrete models Γ0 � 05, Γ0 � 025, and Γ0 � 0125 for ∂B0 � 5

�
0 � 18 � , (c) using piecewise quadratic

extrapolation Γ̃0 � 025.

In practice, the surface reconstruction should be dynamic and driven by the size
of mesh elements. For convection-diffusion problem (3.1) the surface extrapolation
is required only in the upwind part of the obstacle boundary. We shall address this
problem in the future.

4. CONCLUSION

We have shown that representation of curved surfaces using triangular meshes re-
stricts the use of adaptive methods. From the implementation viewpoint, an efficient
technique for node movement over discrete surfaces has to be elaborated. We have
presented an example of such a technique. From the theoretical viewpoint, the use of
triangular meshes instead of analytic surfaces complicates the analysis of adaptive



402 Yu. V. Vassilevski, V. G. Dyadechko, and K. N. Lipnikov

methods. For a particular convection-diffusion problem, we have shown numeri-
cally that the discretization error is proportional to h2 where h is the size of the
quasi-uniform mesh approximating the curved surface. We have analyzed theoreti-
cally and numerically a new surface reconstruction technique, which improves the
performance of adaptive methods.
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